

Features:

- Equal forces on both ends of the piston.
- Force connection direct, torque safe.
- Magnetic piston standard.
- 50\% space-savings.
- End caps with 3 air connections and adjustable cushioning.
- Fast acceleration and high piston velocity.

Specification :

Model		MCRPL			MCRPLF			
Acting type		Double acting			Double acting			
Tube I.D.(mm)		16	25	32,40	16	25	32,40,50	63
Port size		M5	G 1/8	G 1/4	M5	G 1/8	G 1/4	G 3/8
No. of port		3						
Medium		Air						
Operating pressure range		$1 \sim 7.8 \mathrm{kgf} / \mathrm{cm}^{2}$						
Stroke range※	$\phi 16$	$100 \sim 4300 \mathrm{~mm}$						
	¢ 25~63	100~5600 mm						
Ambient Temperature		$-15^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$ (No freezing)						
Lubrication		With or Without lubrication						
Cushion		With adjustable cushion at both ends						
Sensor Switch		RCAL						
Sensor Switch Holder		HPL						

※In increments of 1 mm .
Order example:

MCRPL* Capacity

RODLESS CYLINDER

Forces and moments

$\mathrm{Ma}=\mathrm{F} \times \mathrm{Ha}$
$\mathrm{Mr}=\mathrm{F} \times \mathrm{Hr}$
$M v=F \times H v$

MCRPL

$\left.\begin{array}{cc|c|c|c|cc|c}\hline \text { Cylinder } & \begin{array}{c}\text { Effect force (N) } \\ \text { at 6 bar }\end{array} & \begin{array}{c}\text { Cushion } \\ (\mathrm{mm})\end{array} & \begin{array}{c}\text { Max. allowed } \\ \text { load (N) }\end{array} & \begin{array}{c}\text { Max. allowed } \\ \text { bending moment }(\mathrm{Nm}) \\ \text { Ma axial }\end{array} & \begin{array}{c}\text { Mr radial }\end{array} & \begin{array}{c}\text { Max. allowed } \\ \text { torque }(\mathrm{Nm})\end{array} \\ \text { Mr central }\end{array}\right]$

- 16L~40L: cylinder with long piston for heavy bending, torque moments and vertical movement.
- The figures above are max. values based on light shock free duty and speed of $\mathrm{v} \leqq 0.2 \mathrm{~m} / \mathrm{s}$. Max. pressure 6 bar.
- An exceeding of the values in dynamic operations, even for short moments, has to be avoided.
- Attention: Resulting forces could lead to extreme exceedings of the values. In case of undefinable situations the above max. values have to be reduced by 10-20\%.

MCRPLF

Cylinder		Effect force (N) at 6 bar	Cushion (mm)	Max. allowed load (N)	Max. allowed bending moment (Nm)		Max. allowed torque (Nm)
ϕ	y	F	S	L	Ma axial	Mr radial	Mv central
16	9	110	15	120	4	0.45	0.5
25	14	250	21	300	15	1.5	3.0
32	18	420	26	450	30	3.0	4.5
40	22	640	32	750	60	6.0	8.0
50		1000	32	1200	115	10.0	15.0
63	35.5	1550	40	1650	200	12.0	24.0

- The figures above are max. values based on light shock free duty and speed of $\mathrm{v} \leqq 0.2 \mathrm{~m} / \mathrm{s}$. Max. pressure 6 bar.
- An exceeding of the values in dynamic operations, even for short moments, has to be avoided.
- Attention: Resulting forces could lead to extreme exceedings of the values. In case of undefinable situations the above max. values have to be reduced by 10-20\%.

MCRPL*

Cushioning diagram

Pay attention to the following points:

- If the limits above are exceeded additional shock absorbers are necessary.
- For piston speeds $<0.1 \mathrm{~m} / \mathrm{s}(\mathrm{NBR}),<0.2 \mathrm{~m} / \mathrm{s}$ (VITON) slow speed lubrication is necessary.
- Maximun seal life will be achieved when piston speeds do not exceed $1 \mathrm{~m} / \mathrm{s}$.

Positioning of cylinder mountings

Diagram information :

- Calculated deflections without support of 0.5-1 mm allow exceeding of the approved limits.
- Calculated deflections without support of >1-max. 1.5 mm require reduction of approved limits.

View A : $\phi 16 \sim 32$
View A : $\phi 40$

Tode	A	B	C	D	E	F	G	H	J	K	L	L1	L2	M	M1	N	O	P	P1
Tubel.D.	130	12	15	76	64	48	M5	12	5.5	32	-	-	-	M4	M3	7	6	43.5	42.3
25	200	17	23	120	100	80	G $1 / 8$	18.5	8.5	50	6	7	100	M 5	M 5	11	13	66	58
32	250	23	27	150	110	90	G $1 / 4$	22	10.5	55	6	7	130	M6	M6	14	12	86	82
40	300	45	30	150	110	90	G $1 / 4$	24	15	55	6	7	130	M6	M6	15	12	97	93

Code Tube I.D.	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	$\mathbf{V S}$	\mathbf{W}	$\mathbf{W S}$	$\mathbf{W 1}$	$\mathbf{W} 2$	\mathbf{X}	$\mathbf{X 1}$	$\mathbf{X 2}$	\mathbf{Y}	$\mathbf{Z 1}$	$\mathbf{Z 2}$	$\mathbf{Z 3}$
16	25×24.5	27	18	4	10	18	18	27	27	13.5	9	--	--	--	4.5	37.5	24	28.8
25	36×36	35	23	5	15	27	27	40	40	20	13.5	--	--	--	6.5	53	33	38.8
32	48×52	41	27	6	18	36	40	52	56	30	22	--	--	--	8	74	44	53.5
40	58×58	41	28	6	18	54	--	72	--	--	--	69	36	27	9	85	49	58.2

98 Type

Code Tube I.D.	A	B	C	D	E	F	G	H	J	K	L	L1	L2	M	M1	N	0	P	P1
16L	180	37	15	76	64	48	M5	12	5.5	32	-	-	-	M4	M3	7	6	43.5	42.3
25L	300	67	23	120	100	80	G 1/8	18.5	8.5	50	6	7	100	M5	M5	11	13	66	58
32L	400	23	27	300	240	180	G 1/4	22	10.5	120	-	-	-	M6	M6	14	12	86	82
40L	500	70	30	300	240	180	G 1/4	24	15	120	-	-	-	M6	M6	15	12	97	93
$\begin{array}{c\|} \hline \text { Code } \\ \text { Tube I.D. } \\ \hline \end{array}$	Q	R	S	T	U	V	VS	W	WS	W1	W2	X	X1	X2	Y	Z1	Z2	Z3	
16L	25×24.5	27	18	4	10	18	18	27	27	13.5	9	--	--	--	4.5	37.5	24	28.8	
25L	36×36	35	23	5	15	27	27	40	40	20	13.5	--	--	--	6.5	53	33	38.8	
32L	48×52	41	27	6	18	36	40	52	56	30	22	--	--	--	8	74	44	53.5	
40L	58×58	41	28	6	18	54	--	72	--	--	--	69	36	27	9	85	49	58.2	

- 16L~40L: cylinder with long piston for heavy bending and torque moments.

RODLESS CYLINDER
$\phi 16 \sim \phi 32$

Code Tube I.D.	A	B	C	D	E	G	J	M	M1	\mathbf{P}	\mathbf{Q}	\mathbf{S}	\mathbf{U}	VH	VS	WH	WS	W1	Y
16	65	15.5	15	69	36	M5	5.5	M3 $\times 7$ depth	M4 $\times 7$ depth	36.5	24×24	22	16.5	18	18	27	27	13.5	4.5
25	100	21.5	23	112	65	G1/8	8.5	M5 $\times 12$ depth	M5 $\times 8$ depth	52.5	36×36	33	25	27	27	40	40	20	6.5
32	125	22.0	27	152	90	G1/8	10.5	M6 $\times 15$ depth	M6 $\times 8$ depth	66.5	48×52	36	27	36	40	52	56	30	8

$\phi 40 \sim \phi 63$

$\begin{gathered} \hline \text { Code } \\ \text { Tube I.D. } \\ \hline \end{gathered}$	A	B	C	D	E	G	J	M	M1	P	Q	S	U	VH	VS	WH	WS	W1	Y
40	150	44	30	152	90	G1/4	15	M6×15depth	M6×10depth	80	58×58	36.4	27	54	54	72	69	36	9
50	175	42	33	200	110	G1/4	11.7	M6 $\times 15$ depth	M6×10depth	89	77×78	56	27	70	70	80	80	44.5	5
63	215	47.5	50	235	155	G3/8	25	M8×17depth	M $\times \times 14$ depth	123	102×102	50	36	78	78	106	106	62.5	14.5

MCRPL* Accessories for mounting
RODLESS CYLINDER
End cover bracket (foot) for MCRPL/ MCPRLF
$\phi 16, \phi 25$

$\phi 50, \phi 63$

$\phi 32, \phi 40$

$\phi 32 ※$

Code	ZA	ZB	ZC	ZD	ZE	ZF	ZG	ZH	ZP	order number
Tube 1.D.	Z	1.6	18	26	3.6	4	14	1.5	12.5	--
25	2.5	27	40	5.5	6	22	2	18	--	PL 24/1 $24 / 2$
32	--	36	51	6.5	8	24	4	20	20	PL 24/3
$32 ※$	--	40	56	6.5	8	26	4	20	20	$\mathrm{PL} 24 / 3.1$

Code	ZA	ZB	ZC	ZD	ZE	ZF	ZG	ZH	ZP	order number
Tube I.D.	--	54	71	9	11.5	24	2	20	30	PL 24/4
50	--	70	80	9	12.5	25	2	25	45	PL 24/5
63	--	78	106	11	15	30	2	40	48	PL 24/6

Mid section support for MCRPL / MCPRLF

$\phi 16, \phi 25$

$\phi 50, \phi 63$

Code Tube I.D.	ZE	ZF	ZJ	ZK	ZL	ZM	ZN	ZO	ZQ	order number
16	--	--	41.5	53	5	5.5	20	3	--	PL 25/1
25	--	--	48	60	6	5.5	20	4	--	PL 25/2
32	--	--	61	73	10	6.5	55	6	40	PL 25/3
40	--	--	70	85	10	6.5	60	7.2	45	PL 25/4
50	12.8	35	120	147	5	6.6	45	3.5	30	PL 25/5
63	12.5	35	147	172	5	6.6	45	3.5	30	PL 25/6

MCRPL* Accessories for mounting \& sensor switch

RODLESS CYLINDER

Articulated carrier

MCRPL

$\phi 16, \phi 25$

MCRPL

$\phi 32, \phi 40$

$\begin{aligned} & \text { Code } \\ & \text { Tube I.D. } \end{aligned}$	KA	KB	KC	KD	KE	KF**	KG	KH	KJ	KY**	order number
16	25	4.5	28	13	--	47-50	2	20	10	33	PL 225/1
25	37	5.5	42	20	--	72-75	3	30	16	50	PL 225/2
32	70	6.5	70	38	55	91-100	5	90	75	73.5	PL 225/3
40	70	6.5	70	38	55	111-120	5	90	75	90	PL 225/3
50											
63	90	9	14	31	58	166	6	120	90	104.5	PL 225/6

Sensor switch
Specification:

Model	RCAL
Switch type	Reed switch
Contracts	Normal open
Voltage range	DC/AC 5~240V
Current range	100 mA max.
Switch range	10 W max.
Shock resistance	30 G
Voltage drop	2.5 V max.
Response time	Max. 1ms
Temperature	$-10 \sim 70{ }^{\circ} \mathrm{C}$
Lead wire	$\phi 4,2 \mathrm{C}, \mathrm{PVC}$
Lead wire length	2 m
Indicator lamp	LED lights up when ON
Enclosure classification	IP 67 (NEMA 6)
Indicator	green LED

Code Tube I.D.	A	B	Switch holder
16	16	29.5	
25	15.5	35.5	
32	15.5	41.5	
40	10.5	46.5	
50	16.5	56	
63	15.5	68.5	

